
Distributed File Systems: A Survey

L.Sudha Rani, K. Sudhakar , S.Vinay Kumar

Assistant Professor, Computer Science Department,
GPREC, Kurnool.

Abstract: A wide variety of applications such as aerodynamic
research, weather forecasting, scientific applications relies on
distributed environments to process and analyse large
amounts of data. As the amount of data increases, the need to
provide efficient, easy to use solutions has become one of the
main issues for these type of computations. The best solution
to this issue is the use of Distributed File Systems (DFSs). The
main aim of a distributed file system (DFS) is to allow users of
physically distributed computers to share data and storage
resources by using a common file system. There are many
projects which focused on network computing that have
designed and implemented distributed file systems with
different architectures and functionalities. In this paper, we
develop a comprehensive taxonomy for describing distributed
file system architectures and use this taxonomy to examine
existing distributed file systems implementations in very
large-scale network computing systems

Keywords: Distributed File System(DFS), AFS, NFS, GFS,
HDFS.

I. INTRODUCTION
Distributed File System is a special case of distributed
system. In the Distributed file system, storage resources
and clients are dispersed in the network. The main goal of
Distributed File System is to provide common view of
centralized file system, even though it has a distributed
implementation. In a distributed file system, one or more
central servers store files that can be accessed by any
number of remote clients in the network. The DFS allows
multi-computer systems to share files without any need of
IPC or RPC. Files are shared between users in a
hierarchical and unified view.
Distributed File System has different requirements when
compared to that of local file system. The following are the
requirements which are to be considered when designing
the Distributed File System.
• The fault tolerance feature must be well-implemented.

How fast the data can be recovered after any failure
becomes one of the most important requirements here.

• Files stored in DFS will be very huge. Most of the
files’ size exceed GB level. Handling these type of
huge files is very crucial in DFS. Some FS will divide
files into blocks. The advantage by doing this is
downgrading the size of data handled by one operation
from several GBs to several MBs. But on the other
hand, it requires additional mapping procedure for
every operation, which may cause performance drop.

• Most of the files in DFS are in write-once-read-many
pattern. Therefore many DFS’ provide optimized
function for file writer and reader. Few of them also
have efficient function to edit an arbitrary position in

an existing file. Some DFS’ don’t even provide
function to change any existing file.

• Metadata plays a key role in DFS. Since most DFS has
the support for millions of files, it’s not possible to
efficiently retrieve the information on any given file
simply by traversing every node directly. Due to this
reason, most DFS assign a certain node as the central,
which maintains the metadata of all files stored in the
system. The retrieval for file information will become
much faster via the metadata list.

The structure of the paper is as follows: Section II covers
issues in designing a distributed system. In section III,
Taxonomy of Distributed File System is reviewed in detail.
In Section IV, overview of different Distributed File
Systems is given In Section V, Conclusion of the paper is
outlined.

II. ISSUES IN DISTRIBUTED FILE SYSTEM [1]
There are various points that have to be taken into
consideration while designing a distributed file system.
The different issues are: Transparency, flexibility,
reliability, performance, scalability, security which are
described in this section.

A. Transparency
The most important design issue is to hide from the users
the fact that processes and resources are physically
distributed across the network.The different types of
transparencies are as follows:

Table 1.Types of Transparencies [1]
Transparency Description

Access
Hides the differences in data
representation and how a resource is
accessed.

Location Hides the physical location of a resource.

Migration
Hides the movement of a resource to
another location.

Relocation
Hides the movement of a resource to
another location while in use.

Replication
Hides the fact that multiple copies of the
resource exist without user’s knowledge

B. Flexibility
The best way to achieve flexibility is to take a decision
whether to use monolithic kernel or microkernel on each
machine. The major functions of kernel are: memory
management, process management and resource
management.
Monolithic kernels use the “ kernel does it all“ approach
with all functionalities provided by the kernel irrespective
of whether all machines use it or not.

L.Sudha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3716-3721

www.ijcsit.com 3716

 On the other hand, micro-kernels use the minimalist,
modular approach with accessibility to other services as
needed.

C. Reliability
The users prefer a distributed system where multiple
processes are available as it guards against single-processor
system crashes. Thus on failure, a backup is available.
Reliability means that data should be available without any
errors. In case of replication, all copies should be
consistent.

D. Performance
It means that an application should run just as it were
running on a single processor. The metrics used for
measuring performance are: response time, throughput,
system utilization and amount of network capacity used.
Message transmission over a LAN takes some time, about
one millisecond. To optimize performance, reduce the
number of messages transmitted.
For example, a very small computation like addition of two
numbers need not be computed remotely.

E. Scalability
Distributed systems are designed to work with a few
hundred CPUs. There may be a need to expand the
distributed system by adding more CPUs. To support more
users or resources, there are limitations with centralized
service, tables and algorithms.

The issues of scalability can be summarized as

Table 2.Scalability related issues [1]
Concepts Examples
Centralized Services A single server for all users
Centralized Data A single online telephone book

Centralized Algorithms
Doing routing based on complete
information

F. Security
 Security consists of three main aspects namely,
1. Confidentiality which means protection against

unauthorized access
2. Integrity, which implies protection of data against

corruption
3. Availability, which means protection against failure and

always being accessible

G .Fault Tolerance
In case a system has multiple servers’ and if any Server
breaks down, the other server takes up the load. This
process is transparent to the user.

III. TAXANOMY OF DISTRIBUTED

FILE SYSTEMS [2]
Analyzing the features that constitute the DFS helps to
incorporate most appropriate and suitable file system.
Taxonomy is done based on various factors which are listed
below:
A. Architecture
The following are different DFS architectures that exists

1. Client- Server Architecture: Sun Microsystems’s
Network System which provides standardized view of
local file system.

2. Cluster-Based Distributed File System such as GFS. It
consists of a single master along with multiple chunk
servers and divided into multiple chunks.

3. Symmetric Architecture: In this file system, the clients
also host the metadata manager code, resulting in all
nodes understanding the disk structures. This is based
on peer-to-peer technology.

4. Asymmetric Architecture: There are one or more
dedicated metadata managers that maintain the file
system and its’ associated disk structures. Examples
include Luster and traditional NFS file systems.

5. Parallel Architecture: Here, data blocks are placed in
parallel, across multiple storage devices on multiple
storage servers. Support for concurrent read and write
capabilities.

B .Processes
The important aspect concerning is whether processes
should be stateless or not. The primary advantage of the
stateless approach is simplicity.
Except PVFS2, almost other DFS’s support stateful
processes. The major advantage of a stateless architecture
is that clients can fail and resume without disturbing the
system as a whole.

C. Communication
DFS’s use Remote Procedure Call (RPC) method to
communicate as they make the system independent from
underlying OS, networks and transport protocols. In RPC
approach, there are two communication protocols to
consider, TCP and UDP.
1. TCP is mostly used by all DFS’s.
2. UDP is considered for improving performance in

Hadoop.
There is also a completely different approach to handle
communication in DFS which is a file based distributed
system. In this, all the resources are accessed in the same
way with file like syntax.
Luster provides Network Independence, thus it can be
used on a wide variety of networks due to its use of an open
Abstraction Layer.

D. Naming
The currently common approach employs
1. Central metadata server to manage file name space.
Therefore decoupling metadata and data improve the file
name space and relief the synchronization problem.
2. Metadata distributed in all nodes resulting in all nodes
understanding the disk structure.

E. Synchronization
When a same file is shared by two or more users, it is
necessary to define the semantics of reading and writing
precisely to avoid problems. Apart from semantics, we also
consider to analyze the File Locking System in the DFS.
Major usages require

L.Sudha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3716-3721

www.ijcsit.com 3717

Write-once-read many access models. However, there are
applications such as search engines require multiple
producer/single-consumer access models.
Some systems choose to give locks on objects to clients and
some choose to perform all operations synchronously on
the server.
Lustre applies hybrid solution for File Locking
System.Using leases is the most common method to control
the parallel access to DFS.

F. Caching and Replication
Most of DFS employ checksum to validate the data after
sending through communication network. Caching and
Replication play an important role in DFS when they are
designed to operate over wide area network. It can be done
in many ways such as
1. Client-side caching

The client asks the server if the cached data is ok
2. Server-Side replication.

The server is notified on every open. If a file is opened
for writing, then disable caching by other clients for
that file. There are two types of data that need to be
considered for replication: metadata replication and
data object replication.

G. Fault Tolerance
It is very much related to the replication feature because
replication is created to provide availability and support
transparency of failures to users. There are two approaches
for fault tolerance: failure as exception and failure as norm.
1. Failure as exception systems will isolate the failure

node or recover the system from last normal running
state.

2. Failure as norm systems employs replication of all
kinds of data.

IV. OVERVIEW OF DISTRIBUTED FILE SYSTEMS [3]

NETWORK FILE SYSTEM (NFS) [4]
History
 Network File System(NFS) is developed by Sun
Microsystems in 1985.It is the most popular, open, and
widely used distributed file system for many years. NFS
has 2 versions NFSv3: version three-used for many years
and NFSv4: introduced in 2003 Version 4 made significant
changes to changes to NFS3.
NFS implements a file system model that is almost
identical to a UNIX system. Files are structured as a
sequence of bytes and the file system is hierarchically
structured. It supports hard links and symbolic links. It
implements most of the file operations which are
supported by
A. NFS goals:
• Each file server presents a standard view of its local

file system.
• Transparent access to remote files.
• It has to be compatible with multiple platforms and

operating systems.
• Easy crash recovery at server.

B. Architecture:
NFS has Client-Server Architecture. It provides a
standardized view of the local file system. Clients access
the server transparently through an interface similar to the
local file system interface. Client-side caching may be used
to save time and network traffic. Server defines and
performs all file operations.
Virtual File System (VFS) acts as an interface between the
operating system’s system call layer and all file systems on
a node. The user interface to NFS is the same as the
interface to local file systems. The call actually goes to the
VFS layer, which forwards that either to the local file
system or to the NFS client.

C. Processes:
NFS servers historically did not retain any information
about past requests. The consequence is that crashes
weren’t too painful. If server is crashed, it had no tables to
rebuild so the server can just reboot and start again. The
disadvantage is that client has to maintain all state
information. Therefore messages are longer than they
would be otherwise. NFSv4 is stateful.
D. Communication:
The NFS client communicates with the server using RPCs
File system operations are implemented as remote
procedure calls. At the server: an RPC server stub receives
the request, “un-marshalls” the parameters & passes them
to the NFS server, which creates a request to the server’s
VFS layer. The VFS layer performs the operation on the
local file system and the results are passed back to the
client.

E. Synchronization:
Synchronization of file contents (one-copy semantics) is
not guaranteed when two or more clients are accessing the
same file.
NFSv3 offers the following two strategies for updating the
disk:
Write-through – All the altered pages are written to disk as
soon as they are received to the server. When a write() call
is made, the NFS client comes to know that the page is on
the disk.
Delayed commit – The pages are placed in the cache until
the commit() call is received for the relevant file. This is
the default mode used by NFSv3 clients. A commit() is
issued by the client whenever the file is closed.

F. Caching and Replication:
Server Caching
This is similar to UNIX file caching for local files:
pages (blocks) from disk are held in a main memory buffer
cache until the space is required for newer pages. Read-
ahead and delayed-write optimizations.
For local files, writes are deferred to next sync event (30
second intervals).Server caching works well in the local
context.
Client Caching
The Server caching does not reduce the RPC traffic
between client and server. Further optimization is needed to
reduce the server load in the case of large networks.

L.Sudha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3716-3721

www.ijcsit.com 3718

NFS client module caches all the results of read, write,
getattr, lookup and readdir operations.

G. Fault Tolerance:
Fault tolerance provided in NFS is limited but it is
effective. Services are suspended whenever the server fails.
Recovery from the failures is aided through the stateless
design.

ANDREW FILE SYSTEM (AFS)
History
Andrew File System (AFS) is a file system that was
developed as a part of a larger project known as Andrew.
AFS was originally developed for computers which run
operating systems such as BSD UNIX and Mach. Like
NFS, AFS provides transparent access to remote shared
files for UNIX programs running on workstations.AFS is
implemented as two software components that exist at
UNIX processes called Vice and Venus. The research on
AFS is now done in a project named as Open AFS. The
Open AFS implementation supports a number of platforms
such as: Linux, Apple Mac OSX, Sun Solaris and
Microsoft Windows NT.

A. Goals
• The main design goal of AFS was to create a system

for large networks.
• Transparent access to remote shared files.

B. Architecture
The basic organizational unit of AFS is the cell. An AFS
cell is the collection of server and client machines which is
administered independently.. Since AFS is the most
commonly used DFS in various academic and research
environments, the cells should also participate in a global
AFS file tree. However, this is not mandatory.
Servers and clients can only belong to a single cell at any
given time, but the user may have accounts in multiple
cells. The cell that is first logged in to is known as the home
cell and the other cells are known as the foreign cells. From
the user's point of view, the AFS hierarchy is accessed
through the path /afs/ [cell name] by using normal file
system operations. Since AFS is location transparent, the
path to a file in the tree will be the same regardless of the
location of the client. Whether the file is actually accessible
or not depends on the user's credentials and the file's access
permissions, as set by Access Control Lists.

C. Processes:
In AFS neither the server nor the client is stateful. They
don’t store any sort of information regarding the requests
made by the clients..

D. Communication:
AFS communication is implemented over TCP/IP. The
RPC protocol named Rx, which is developed for AFS, is
used for communication between two machines.The
communication protocol is optimized for wide area
networks, and there are no restrictions on the geographical
locations of participating servers and clients.

E. Synchronization:
 Generally AFS is dependent on server clock
synchronization for database replication. This is achieved
by using the Network Time Protocol Daemon. One server
acts as a synchronization site, getting the time from an
external source. The other servers update their clocks
against the synchronization site.

F. Caching and Replication:
The strategy that is chosen for caching in AFS was to
cache files locally on the clients. When a file is opened, the
Cache Manager (client-side component) initially checks
whether there is a valid copy of the file in the cache or not.
If the file is not there in the cache, then the client retrieves
the file form the server by making a request to it. A file that
has been modified and closed on the client is transferred
back to the server. The client builds up a "working set" of
often-accessed files in the cache. The optimal cache size is
usually 100 MB, but this depends on what the client is used
for. As long as the cached files are not modified by other
users, they do not have to be fetched from the server when
subsequently accessed. This reduces the load on the
network significantly. Caching can be done on disk or in
memory.

GOOGLE FILE SYSTEM (GFS) [5]

History
The Google File System (GFS) is introduced in 2003 to
meet the rapidly growing demands of Google’s data
processing requirements. It is a scalable distributed file
system which was especially developed for large
distributed data-intensive applications. It provides fault
tolerance while running on inexpensive commodity
hardware, and it delivers high aggregate performance to a
large number of clients. GFS clusters consists of hundreds
or even thousands of storage machines that are built from
inexpensive commodity hardware.

A. Goals
GFS shares many of the same goals as previous distributed
file systems such as performance, reliability, and
availability. some of the design goals specific to GFS are as
given below.
• Redundant storage of massive amounts of data on

cheap and unreliable computers.
• It has to process huge numbers of requests
• GFS stores a huge number of files, totaling many

terabytes of data.

B. Architecture
GFS employs cluster based architecture. A GFS cluster
consists of a single master node , multiple chunk servers
and is accessed by multiple clients. Files are divided into
fixed-size chunks. Each chunk is identified by using an
unique 64 bit chunk handle assigned by the master at the
time of chunk creation. For reliability, each chunk is
replicated on multiple chunk servers. By default, the
replication factor is chosen as three.
The master node maintains all the metadata. This includes
the access control information, the mapping from files to

L.Sudha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3716-3721

www.ijcsit.com 3719

chunks, and the current locations of chunks. It also controls
system-wide activities such as chunk lease management,
garbage collection of orphaned chunks, and chunk
migration between chunk servers. The master periodically
communicates with each chunk server through Heart Beat
messages to collect their state.

C. Processes
GFS servers are Stateful. They have to maintain all the
state information about the requests made by the clients.

D. Communication
Clients send data request to the master node, which
maintains metadata of all chunks and the mapping from file
to chunks. The master returns the metadata requested to the
client. Then the client is enabled to connect to the chunk
server directly for data transfer. All this communication in
between the master node and client nodes is performed
using RPC/TCP
Protocol.

E. Synchronization
GFS is equipped with a carefully designed locking function
that can handle multi-operation to one same chunk
simultaneously.

F. Caching and Replication
The GFS uses chunk replica placement policy .It serves
two purposes: maximize data reliability and availability,
and maximize network bandwidth utilization. For both of
these purposes it is not enough to spread replicas across
machines, which can guard only against disk or machine
failures and fully utilizes each machine’s network
bandwidth. We must also spread chunk replicas across
racks. This ensures that some replicas of a chunk will
survive and remain available even if an entire rack is
damaged or offline.

G. Fault Tolerance
All the data in GFS is triple replicated. Whenever a chunk
server is down, the master can always redirect data requests
to the replicas, until the node is back online. If the master
fails, the system can easily choose another node to generate
a metadata list by scanning over all chunk servers and work
as master.

HADOOP DISTRIBUTED FILE SYSTEM (HDFS) [6][7]
History
The Hadoop Distributed File System (HDFS) is an open-
source version of GFS from Yahoo. The HDFS is a
distributed file system which is designed to run over
commodity hardware. It has many similarities with the
existing distributed file systems. The significant difference
of HDFS with other distributed systems is that, HDFS is
highly fault-tolerant. HDFS provides high throughput
access to application data and is especially designed for
applications that have large data sets.
A. Goals
• As HDFS is designed for batch processing rather than

interactive use by users, the emphasis is on high

throughput of data access rather than low latency of
data access.

• HDFS has to provide high aggregate data bandwidth
and it has to scale to hundreds of nodes in a single
cluster.

• It should support tens of millions of files in a single
instance.

• Detection of faults , quick and automatic recovery
from them is a core architectural goal of HDFS.

B. Architecture
HDFS employs a master/slave architecture. An HDFS
cluster consists of a single Name Node, which is the master
node that manages the file system namespace and regulates
the access to files by clients. In addition to the Name Node
there are number of Data Nodes, which manage the storage
attached to the nodes that they run on. The user data is
stored in the form of files, generally a file is split into one
or more blocks and these blocks are stored in a set of Data
Nodes.
 The Name Node executes various file system operations
like opening, closing, and renaming files and directories.
The Data Nodes are responsible for serving read and write
requests from the file system’s clients. The Data Nodes also
performs block creation, deletion, and replication whenever
the Name Node instructs.
The Name Node and Data Node are pieces of software that
are designed to run on commodity machines. These
machines typically run a GNU/Linux operating system
(OS). HDFS is built using the Java language, any machine
that supports Java can run the Name Node or the Data
Node software.

C. Processes
HDFS servers are Stateful. They have to maintain all the
state information about the requests made by the clients.

D. Communication
All HDFS communication protocols are layered on top of
the TCP/IP protocol. A client establishes a connection the
Name Node through configurable TCP port . The Data
Nodes talk to the Name Node using the Data Node
Protocol. A Remote Procedure Call (RPC) abstraction
wraps both the Client Protocol and the Data Node Protocol.
The Name Node never initiates any RPCs, it only responds
to RPC requests issued by Data Nodes or clients.

E. Synchronization
HDFS applications use a write-once-read-many access
model for files. Files in HDFS are write-once and have
strictly one writer at any time. A file once created, written,
and closed need not be changed. A Map/Reduce application
or a web crawler application fits perfectly with this model.
There is a plan to support for appending-writes to files.

F. Caching and Replication
HDFS is designed to store very large files across machines
in a large cluster. Files are divided into blocks and each
block of a file is replicated for fault tolerance. The block
size and replication factor are configurable per file. The

L.Sudha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3716-3721

www.ijcsit.com 3720

replication factor can be specified at file creation time and
can be changed later. The Name Node makes all decisions
regarding replication of blocks. It periodically receives a
Heartbeat and a Block report from each of the Data Nodes
in the cluster. Receipt of a Heartbeat implies that the Data
Node is functioning properly.
HDFS uses rack-aware replica placement policy to improve
data reliability, availability, and network bandwidth
utilization. HDFS’s placement policy is to put one replica
on one node in the local rack, another on a different node in
the local rack, and the last on a different node in a different
rack. This policy cuts the inter-rack write traffic generally
improves write performance. The chance of rack failure is
far less than that of node failure.
Communication between two nodes in different racks has
to go through switches. In most cases, network bandwidth
between machines in the same rack is greater than network
bandwidth between machines in different racks. A simple
but non-optimal policy is to place replicas on unique racks.

G. Fault Tolerance
As the HDFS’s placement policy puts one replica on one
node in the local rack, another on a different node in the
local rack, and the last on a different node in a different
rack. If the first node in the local rack fails request is sent to
a different node in the same rack where the replica is found.
If that node also fails then the request is sent to a different
node in the different rack. Therefore due to the usage of
replica placement policy, fault tolerance is achieved in
HDFS.

V. CONCLUSION
The DFSs are the most important and widely used forms of
shared permanent storage. DSFs are the principle storage
solution used by supercomputers, clusters and data centers.
Architecture, naming, synchronization, availability,
heterogeneity and support for databases will be key issues
that are to be taken into consideration while designing the
DFS. In this paper, taxonomy was developed for the DFS
and based on that taxonomy. Some of the most popular and
common distributed file systems like AFS, NFS, GFS and
HDFS were reviewed and surveyed.
NFS was the most popular, open, and widely used
Distributed File System for many days. It is compatible

with multiple operating systems and platforms. As NFS
Server is stateless easy crash recovery is the most important
advantage of NFS.
AFS employs aggressive client side caching with proactive
cache-invalidation. This is one of the strengths of AFS. But
AFS has some Weaknesses like it is difficult to setup, very
complex, it has a big Linux kernel module for client. Due
to these reasons AFS could not become as much popular as
NFS.
For data intensive applications where massive amount of
data has to be stored DFSs like GFS and HDFS can be
used.
GFS is fully distributed. This is the important feature of
DFS. But it has some weaknesses like it requires heavy-
duty, non-standardized cluster management system. and it
is compatible only with Linux platform. The negative side
of GFS is that it is not a open source version. It is
especially designed for Google Applications and can be
used only by the people of Google.
HDFS is the open source version and can be used by
everyone. It offers tremendous opportunity for massive
scale. It can be very useful for commercial applications like
Marketing analytics, processing of XML messages etc. It is
a fault tolerant distributed system and also highly scalable.
Hadoop can also be integrated with resource management
cloud software. As HDFS has the above mentioned
advantages, current research work has been going on it.
The negative point of Hadoop is that most of the
organizations are trying to pull it different directions.

REFERENCES
[1] Sunita Mahajan”Distributed Computing”, Oxford University Press
[2] Andrew Tenanbum,”Distributed System”, PHI
[3] Tran Doan Thanh, “A Taxonomy and Survey on Distributed File

Systems “, Fourth International Conference on Networked
Computing and Advanced Information Management.

[4] Russell Sandbaerg, “Design and Implementation or the SUD
Network File system”, Sun Microsystems.

[5] Ghemawat, S., Gobioff, H., Leung, S.T., “The Google file system”,
ACM SIGOPS Operating Systems Review, Volume 37, Issue 5, pp.
29-43,December, 2003.

[6] Konstantin Shvachko,” The Hadoop Distributed File System”,
Yahoo-Inc.com.

[7] The Hadoop Distributed File System
http://hadoop.apache.org/core/docs/current/hdfs_design.html

L.Sudha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3716-3721

www.ijcsit.com 3721

